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1 Interesting Physical Phenomena–Contd.

1.1 Brewster Angle

Since most materials at optical frequencies have ε2 6= ε1, but µ2 ≈ µ1, the TM
polarization for light behaves differently from TE polarization. For RTM , it is
possible that RTM = 0 if

ε2β1z = ε1β2z (1.1)

Squaring the above, making note that βiz =
√
β2
i − β2

x, one gets

ε2
2(β1

2 − βx2) = ε1
2(β2

2 − βx2) (1.2)

Solving the above, assuming µ1 = µ2 = µ, gives

βx = ω
√
µ

√
ε1ε2
ε1 + ε2

= β1 sin θ1 = β2 sin θ2 (1.3)

The latter two equations come from phase matching at the interface. Therefore,

sin θ1 =

√
ε2

ε1 + ε2
, sin θ2 =

√
ε1

ε1 + ε2
(1.4)

or that

sin2 θ1 + sin2 θ2 = 1, (1.5)

Then, assuming that θ1 and θ2 are less than π/2,

sin θ2 = cos θ1 (1.6)

or that

θ1 + θ2 = π/2 (1.7)

This is used to explain why at Brewster angle, no light is reflected back to
Region 1. Figure 1 shows that the induced polarization dipoles in Region 2
always have their axes aligned in the direction of reflected wave. A dipole does
not radiate along its axis, which can be verified heuristically by field sketch and
looking at the Poynting vector. Therefore, these induced dipoles in Region 2 do
not radiate in the direction of the reflected wave.
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Figure 1: Courtesy of J.A. Kong, EM Wave Theory.

Because of the Brewster angle effect, and that ε2 6= ε1, |RTM | ≤ |RTE |
as shown in Figure 2. Then when a randomly polarized light is incident on a
surface, the polarization where the electric field is parallel to the surface (TE
polarization) is reflected more than the polarization where the magnetic field is
parallel to the surface (TM polarization). This phenomenon is used to design
sun glasses to reduce road glare for drivers. For light reflected off a road surface,
they are predominantly horizontally polarized with respect to the surface of the
road. When sun glasses are made with vertical polarizers, they will filter out
and mitigate the reflected rays from the road surface to reduce road glare.
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Figure 2:

1.2 Surface Plasmon Polariton

Surface plasmon polariton occurs for the same mathematical reason for the
Brewster angle effect but the physical mechanism is quite different. The reflec-
tion coefficient RTM can become infinite if ε2 < 0, as in a plasma medium.

In this case, the criterion is

−ε2β1z = ε1β2z (1.8)

When the above is satisfied, RTM becomes infinite. This implies that a reflected
wave exists when there is no incident wave. In other words, a reflected wave
exists while there is no incident wave. This is often encountered in a resonance
system like an LC tank circuit. Current flows in the tank circuit despite the
absence of an exciting voltage. Hence, there is a plasmonic resonance or guided
mode existing at the interface without the presence of an incident wave.

Solving (1.8) after squaring it, as in the Brewster angle case, yields

βx = ω
√
µ

√
ε1ε2
ε1 + ε2

(1.9)

This is the same equation for the Brewster angle except now that ε2 is negative.
Even if ε2 < 0, but ε1 + ε2 < 0 is still possible so that the expression under the
square root sign (1.9) is positive. Thus, βx can be pure real. The corresponding
β1z and β2z in (1.8) can be pure imaginary, and (1.8) can still be satisfied.

This corresponds to a guided wave propagating in the x direction. When
this happens,

β1z =

√
β1

2 − βx2 = ω
√
µ

[
ε1

(
1− ε2

ε1 + ε2

)]1/2
(1.10)

Since ε2 < 0, ε2/(ε1 + ε2) > 1, then β1z becomes pure imaginary. Moreover,

β2z =
√
β2

2 − βx2 and β2
2 < 0 making β2z becomes even a larger imaginary
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number. This corresponds to a trapped wave at the interface. The wave decays
exponentially in both directions away from the interface and they are evanescent
waves. This mode is shown in Figure 3, and is the only case in electromagnetics
where a single interface can guide a surface wave, while such phenomena abound
for elastic waves.

When one operates close to the resonance of the mode so that the denomina-
tor in (1.9) is almost zero, then βx can be very large. The wavelength becomes
very short in this case, and since βiz =

√
β2
i − β2

x, then β1z and β2z become
even larger imaginary numbers. Hence, the mode becomes tightly confined to
the surface, making the confinement of the mode very tight. It portends use
in tightly packed optical components, and has caused some excitement in the
optics community.

Figure 3: Courtesy of Wikipedia.

2 Homomorphism of Uniform Plane Waves and
Transmission Lines Equations

It turns out that the plane waves through layered medium can be mapped
into the multi-section transmission line problem due to mathematical homo-
morphism between the two problems. Hence, we can kill two birds with one
stone: apply all the transmission line techniques and equations that we have
learnt to solve for the solutions of waves through layered medium problems.

For uniform plane waves, since they are proportional to exp(−jβ · r), we
know that with ∇ → −jβ, Maxwell’s equations becomes

β ×E = ωµH (2.1)

β ×H = −ωεE (2.2)

for a general isotropic homogeneous medium. We will specialize these equations
for different polarizations.
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2.1 TE or TEz Waves

For this, one assumes a TE wave traveling in z direction with electric field
polarized in the y direction, or E = ŷEy, H = x̂Hx + ẑHz, then we have from
(2.1)

βzEy = −ωµHx (2.3)

βxEy = ωµHz (2.4)

From (2.2), we have

βzHx − βxHz = −ωεEy (2.5)

Then, expressing Hz in terms of Ey from (2.4), we can show from (2.5) that

βzHx = −ωεEy + βxHx = −ωεEy +
β2
x

ωµ
Ey

= −ωε(1− β2
x/β

2)Ey = −ωε cos2 θEy (2.6)

where βx = β sin θ has been used.
Eqns. (2.3) and (2.6) can be written to look like the telegrapher’s equation

by letting −jβz → d/dz to get

d

dz
Ey = jωµHx (2.7)

d

dz
Hx = jωε cos2 θEy (2.8)

If we let Ey → V , Hx → −I, µ → L, ε cos2 θ → C, the above is exactly analo-
gous to the telegrapher’s equation. The equivalent characteristic impedance of
these equations above is then

Z0 =

√
L

C
=

√
µ

ε

1

cos θ
=

√
µ

ε

β

βz
=
ωµ

βz
(2.9)

The above is the wave impedance for a propagating plane wave with propagation
direction or the β inclined with an angle θ respect to the z axis. When θ = 0,
the wave impedance becomes the intrinsic impedance of space.

A two region, single-interface reflection problem can then be mathemati-
cally mapped to a single-junction two-transmission-line problem. The equiva-
lent characteristic impedances of these two regions are then

Z01 =
ωµ1

β1z
, Z02 =

ωµ2

β2z
(2.10)

We can use the above to find Γ12 as given by

Γ12 =
Z02 − Z01

Z02 + Z01
=

(µ2/β2z)− (µ1/β1z)

(µ2/β2z) + (µ1/β1z)
(2.11)
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The above is the same as the Fresnel reflection coefficient found earlier for TE
waves or RTE after some simple re-arrangement.

Assuming that we have a single junction transmission line, one can define a
transmission coefficient given by

T12 = 1 + Γ12 =
2Z02

Z02 + Z01
=

2(µ2/β2z)

(µ2/β2z) + (µ1/β1z)
(2.12)

The above is similar to the continuity of the voltage across the junction, which
is the same as the continuity of the tangential electric field across the interface.
It is also the same as the Fresnel transmission coefficient TTE .

2.2 TM or TMz Waves

For the TM polarization, by invoking duality principle, the corresponding equa-
tions are, from (2.7) and (2.8),

d

dz
Hy = −jωεEx (2.13)

d

dz
Ex = −jωµ cos2 θHy (2.14)

Just for consistency of units, since electric field is in V m−1, and magnetic field
is in A m−1 we may chose the following map to convert the above into the
telegrapher’s equations, viz;

Ey → V, Hy → I, µ cos2 θ → L, ε→ C (2.15)

Then, the equivalent characteristic impedance is now

Z0 =

√
L

C
=

√
µ

ε
cos θ =

√
µ

ε

βz
β

=
βz
ωε

(2.16)

The above is also termed the wave impedance of a TM propagating wave making
an inclined angle θ with respect to the z axis. Notice again that this wave
impedance becomes the intrinsic impedance of space when θ = 0.

Now, using the reflection coefficient for a single-junction transmission line,
and the appropriate characteristic impedances for the two lines as given in
(2.16), we arrive at

Γ12 =
(β2z/ε2)− (β1z/ε1)

(β2z/ε2) + (β1z/ε1)
(2.17)

Notice that (2.17) has a sign difference from the definition of RTM derived earlier
in the last lecture. The reason is that RTM is for the reflection coefficient of
magnetic field while Γ12 above is for the reflection coefficient of the voltage or
the electric field. This difference is also seen in the definition for transmission
coefficients. A voltage transmission coefficient can be defined to be

T12 = 1 + Γ12 =
2(β2z/ε2)

(β2z/ε2) + (β1z/ε1)
(2.18)

7



ECE 604, Lecture 15 Wed, Feb 13, 2019

But this will be the transmission coefficient for the voltage, which is not the
same as TTM which is the transmission coefficient for the magnetic field or the
current. Different textbooks may define different transmission coefficients for
this polarization.
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